Efficient Solution of Large-Scale Electromagnetic Eigenvalue Problems using the Implicitly Restarted Arnoldi Method
نویسندگان
چکیده
We are interested in determining the electromagnetic fields within closed perfectly conducting cavities that may contain dielectric or magnetic materials. The vector Helmholtz equation is the appropriate partial differential equation for this problem. It is well known that the electromagnetic fields in a cavity can be decomposed into distinct modes that oscillate in time at specific resonant frequencies. These modes are referred to as eigenmodes, and the frequencies of these modes are referred to as eigenfrequencies. Our present application is the analysis of linear accelerator components. These components may have a complex geometry; hence numerical methods are required to compute the eigenmodes and eigenfrequencies of these components.
منابع مشابه
Implicitly Restarted Arnoldi/lanczos Methods for Large Scale Eigenvalue Calculations
This report provides an introductory overview of the numerical solution of large scale algebraic eigenvalue problems. The main focus is on a class of methods called Krylov subspace projection methods. The Lanczos method is the premier member of this class and the Arnoldi method is a generalization to the nonsymmetric case. A recently developed and very promising variant of the Arnoldi/Lanczos s...
متن کاملARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods
متن کامل
Some new restart vectors for explicitly restarted Arnoldi method
The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...
متن کاملPartial Eigenvalue Assignment for Large Observer Problems
The construction of a closed-loop observer for linear control systems and the associated eigenvalue assignment problem are classical tasks in Control Theory. The present paper describes an algorithm for the solution of this eigenvalue assignment problem. The algorithm is based on the implicitly restarted Arnoldi method, and is well suited for large-scale problems, that require the (re)assignmen...
متن کاملImplicitly Restarted Arnoldi Methods and Eigenvalues of the Discretized Navier Stokes Equations
Implicitly restarted Arnoldi methods and eigenvalues of the discretized Navier Stokes equations. Abstract We are concerned with nding a few eigenvalues of the large sparse nonsymmetric generalized eigenvalue problem Ax = Bx that arises in stability studies of incompressible uid ow. The matrices have a block structure that is typical of mixed nite-element discretizations for such problems. We ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997